
Note: In this problem set, expressions in green cells match corresponding expressions in the
text answers.
Clear["Global`*⋆"]

4 - 10 Gauss-Seidel iteration
Do 5 steps, starting from x0=[1 1 1]T and using 6S in the computation. Hint. Make sure
that you solve each equation for the variable that has the largest coefficient.

5. 10 x1 + x2 + x3 = 6 ; x1 + 10 x2 + x3 = 6 ; x1 + x2 + 10 x3 = 6

For less deceitful acquisition of matrix iteration, focusing on actual Gauss-Seidel operations,
see problem 11.
m = {{10, 1, 1}, {1, 10, 1}, {1, 1, 10}};
n = {{6}, {6}, {6}};

LinearSolve[m, n]


1

2
, 

1

2
, 

1

2


7. 5 x1 -− 2 x2 + 0 = 18 ; -−2 x1 + 10 x2 -− 2 x3 = -−60 ; 0 -− 2 x2 + 15 x3 = 128

m = {{5, -−2, 0}, {-−2, 10, -−2}, {0, -−2, 15}};
n = {{18}, {-−60}, {128}};

LinearSolve[m, n]

{{2}, {-−4}, {8}}

9. 5 x1 + x2 + 2 x3 = 19 ; x1 + 4 x2 -− 2 x3 = -−2 ; 2 x1 + 3 x2 + 8 x3 = 39

Clear["Global`*⋆"]

m = {{5, 1, 2}, {1, 4, -−2}, {2, 3, 8}};
n = {{19}, {-−2}, {39}};

LinearSolve[m, n]

{{2}, {1}, {4}}

11. Apply the Gauss-Seidel iteration (3 steps) to the system in problem 5, starting from
(a) 0,0,0 (b) 10,10,10. Compare and comment.

While searching for code dealing with Gauss-Seidel I ran into a recent (Oct '18) question on
SEMma that talks about different larger scaled matrix factorization schemes for Mathemat-
ica, which I found interesting. It’s at
https://mathematica.stackexchange.com/questions/173616/a-geometric-multigrid-solver-for-mathemati-
ca/173617, authored by Henrik Schumacher.

https://mathematica.stackexchange.com/questions/173616/a-geometric-multigrid-solver-for-mathemati-
ca/173617, authored by Henrik Schumacher.

The following Gauss-Seidel code I found at https://www.youtube.com/watch?v=n1n3pfRbBvE, the
video by miles hill. It’s based on the equation

xi(k+1) = L-−1 b
>
-− U.x

>(k)
, the standard Gauss-− Seidel iteration equation.

Clear["Global`*⋆"]

GaussSeidelMat[a_?MatrixQ, b_?MatrixQ, x0_?MatrixQ,
error_Real, steps_Integer] := Block{l, u, x, abs}, x[0] = x0;
l = a SparseArray[{i_, j_} /∕; j ≤ i → 1, {3, 3}];
u = a SparseArray[{i_, j_} /∕; j > i → 1, {3, 3}];
ReapDo x[i] = Inverse[l].(b -− u.x[i -− 1]);

abs = Norm[x[i] -− x[i -− 1]]  Norm[x[i]];
If[abs < error, Sow@x[i];
Break[]];

If[i ⩵ steps, Sow@x[steps]], {i, steps}[[-−1, -−1, 1]]

Matrix aa is the matrix of coefficients, bb is the rhs sol’n set, pp is an initial guess (set to
zero by the problem and also by convention). The first run is with the test data in the video.
The video adjusted the tolerance variable greatly downward during its demonstration, but
somehow the relatively high 0.5 doesn’t affect the matrices in the present problem.
aa = {{10, 2, -−1}, {-−3, -−6, 2}, {1, 1, 5}}; (*⋆ sample data from video *⋆)
bb = {{27}, {-−61.5}, {-−21.5}};
pp = {{0}, {0}, {0}};
args = {N@aa, N@bb, N@pp, 0.05, 50};

GaussSeidelMat @@ args

{{0.523687}, {8.01}, {-−6.00674}}

The data from problem 5 is inserted, which is part (a) of the current problem.
a2 = {{10, 1, 1}, {1, 10, 1}, {1, 1, 10}};
b2 = {{6}, {6}, {6}};
p2 = {{0}, {0}, {0}};
arg3 = {N@a2, N@b2, N@p2, 0.05, 3};

The results, I think, meet the text answer within 5S standards.
GaussSeidelMat @@ arg2

{{0.499825}, {0.500008}, {0.500017}}

Now for part (b). Again, the results are within 5S of the text.

2 20.3 Linear Systems- Solution by Iteration 858.nb

a2 = {{10, 1, 1}, {1, 10, 1}, {1, 1, 10}};
b2 = {{6}, {6}, {6}};
p2 = {{10}, {10}, {10}};
arg3 = {N@a2, N@b2, N@p2, 0.05, 3};

GaussSeidelMat @@ arg3

{{0.503333}, {0.499845}, {0.499682}}

14 - 17 Jacobi iteration
Do 5 steps, starting from x0=[1 1 1]. Compare with the Gauss-Seidel iteration. Which of
the two seems to converge faster?

15. The system in problem 9.

I got the Jacobi iteration code from https://community.wolfram.com/groups/-/m/t/831921. And I
haven’t analyzed it to make sure it is genuinely Jacobi algorithmic. But it seems to work. It
has the slightly primitive quality of necessitating the setting of the variable k, in the While
loop, to fit each circumstance.
Clear["Global`*⋆"]

jac[A_, b_, xstart_] := Module{n, k, i, j, xneu, xalt}, n = Length[b];
xalt = xstart;
k = 0;
Whilek < 9, xneu = b;

Fori = 1, i ≤ n, i++, For[j = 1, j ≤ n, j++,
If[i ≠ j, xneu[[i]] = xneu[[i]] -− A[[i, j]] *⋆ xalt[[j]]]];

xneu[[i]] = xneu[[i]]  A[[i, i]];
xalt = xneu;
k++;

xalt;

a2 = {{5, 1, 2}, {1, 4, -−2}, {2, 3, 8}};
b2 = {{19}, {-−2}, {39}};
p2 = {{1}, {1}, {1}};

N[jac[a2, b2, p2]]

{{1.99997}, {1.00003}, {3.99999}}

The text answer shows {{1.99934},{1.00043},{3.99684}} after five steps, whereas the
above takes eight steps to get to (about) the same place. Anyway, GS seems to converge
faster to me.

18 - 20 Norms
Compute the norms (9),(10),(11) for the following (square) matrices. Comment on the
reasons for greater or smaller differences among the three numbers.

20.3 Linear Systems- Solution by Iteration 858.nb 3

18 - 20 Norms
Compute the norms (9),(10),(11) for the following (square) matrices. Comment on the
reasons for greater or smaller differences among the three numbers.

19. The matrix in problem 5.

Clear["Global`*⋆"]

m = {{10, 1, 1}, {1, 10, 1}, {1, 1, 10}};
n = {{6}, {6}, {6}};

Norm[m]

12

The text reports three numbers, associated with three phases of intermediate calculation;
Mathematica has only one result, which matches the text’s final two.

4 20.3 Linear Systems- Solution by Iteration 858.nb

